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Abstract. High-throughput sequencing technology led significant ad-
vances in functional genomics, giving the opportunity to pay particular
attention to the role of specific biological entities. Recently, researchers
focused on long non-coding RNAs (lncRNAs), i.e. transcripts that are
longer than 200 nucleotides which are not transcribed into proteins. The
main motivation comes from their influence on the development of hu-
man diseases. However, known relationships between lncRNAs and dis-
eases are still poor and their in-lab validation is still expensive. In this
paper, we propose a computational approach, based on heterogeneous
clustering, which is able to predict possibly unknown lncRNA-disease
relationships by analyzing complex heterogeneous networks consisting
of several interacting biological entities of different types. The proposed
method exploits overlapping and hierarchically organized heterogeneous
clusters, which are able to catch multiple roles of lncRNAs and diseases
at different levels of granularity. Our experimental evaluation, performed
on a heterogeneous network consisting of microRNAs, lncRNAs, diseases,
genes and their known relationships, shows that the proposed method is
able to obtain better results with respect to existing methods.

1 Introduction

High-throughput sequencing technology, alongside new computational methods,
has been crucial for rapid advances in functional genomics. Among the most
important results achieved by exploiting these new technologies, there is the
discovery of thousands of non-coding RNAs (ncRNAs). Since their function ap-
pears to be pivotal for the fine-tuning of the expression of many genes [3], in the
last decade, the number of papers reporting evidences about ncRNAs involve-
ment in human complex diseases, such as cancer, has grown at an exponential
rate. Among the different classes of ncRNAs, the most investigated one is that
of microRNAs (miRNAs), which are small molecules that regulate the expres-
sion of genes through the modulation of the translation of their transcripts [7].
Much less is known about the functional involvement of long non-coding RNAs



(lncRNAs), i.e. non-coding transcripts which are longer than 200 nucleotides,
that have been recently discovered to have a plethora of regulatory functions
[11]. However, the number of lncRNAs for which the functions are known is still
quite poor and their in-lab validation requires large resources. Thus, assessing
the role and, especially, the molecular mechanisms underlying the involvement
of lncRNAs in human diseases, is not a trivial task.

In the last few years, there were some attempts to computationally predict
the relationships among biological entities, such as genes, miRNAs, lncRNAs,
diseases, tissues, etc. An example can be found in [14], where the authors pro-
pose an approach to learn to combine the outputs of several algorithms for the
prediction of miRNA-gene interactions. A more sophisticated approach has been
proposed in [4], where the authors adopt the multi-view learning framework for
the reconstruction of gene-gene interaction networks.

Focusing on the identification of relationships involving diseases, in [16] the
authors propose a method to identify possible relationships between lncRNAs
and diseases, by exploiting a bipartite network and a propagation algorithm.
Analogously, in [1] the authors propose the method ncPred which exploits a
tripartite graph representing known ncRNA-gene and gene-disease associations.
Such a graph is analyzed by adopting a multi-level resource transfer technique
that, at each step, takes into account the resource transferred in the previous
one. For each detected interaction, the algorithm associates a score indicating its
degree of certainty. Both these methods, however, cannot exploit additional in-
formation associated with the involved biological entities as well as other entities
that are related to the considered ones (e.g., genes, miRNAs, tissues, etc.).

In this paper, we present a novel method for the identification of previously
unknown relationships between diseases and lncRNAs, which extends the het-
erogeneous clustering approach we proposed in [15]. In particular, the proposed
method is able to identify heterogeneous clusters from heterogeneous networks,
where nodes are biological entities (each associated with their own features)
and edges represent known relationships among them (see Figure 1). Then, the
identified clusters are exploited to predict the possible existence of unknown
relationships between lncRNAs and diseases falling in the same clusters. This
approach is motivated by the fact that lncRNAs and diseases will fall in the same
clusters if they appear similar according to their features and their relationships
with the other analyzed entities. Therefore, the main advantage of the approach
proposed in this paper comes from its ability to globally take into account the
complex network of interactions involving different biological entities. Moreover,
the proposed algorithm has the advantage of identifying possibly overlapping
and hierarchically organized clusters, since i) the same lncRNA/disease can be
involved in multiple networks of relationships and ii) as shown in [12], clusters at
different levels of the hierarchy can describe more specific or more general rela-
tionships and cooperation activities. In the following section, we briefly describe
our clustering method and its exploitation to identify unknown lncRNA-disease
relationships, while in Section 3 we report the results of our experiments. Finally,
in Section 4, we draw some conclusions and outline the ongoing work.



2 Method

In the following, we introduce the notation and some useful definitions.

Def. 1 (Heterogeneous network). A heterogeneous network is a network
G = (V,E), where V is the set of nodes and E is the set of edges among nodes,
where both nodes and edges can be of different types. Moreover:

– each node v′ ∈ V is associated to a single node type tv(v′) ∈ T , where T is
the finite set {Tp} of all the possible types of nodes in the network;

– each node type Tp implicitly defines a subset of nodes Vp ⊆ V ;
– a node type Tp defines a set of attributes Xp = {Xp,1, Xp,2, . . . , Xp,mp

};
– an edge e between two nodes v′ and v′′ is associated to an edge type Rj ∈ R,

where R is the finite set {Rj} of all the possible edge types in the network.
Formally, e = 〈Rj , 〈v′, v′′〉〉 ∈ E, where Rj = te(e) ∈ R is its edge type;

– an edge type Rj defines a subset of edges Ej ⊆ (Vp × Vq) ⊆ E;
– node types T are partitioned into Tt (target), i.e. considered as target of

the clustering/prediction task, and Ttr (task-relevant). Only nodes of tar-
get types are actually clustered and considered in the identification of new
relationships, on the basis of all the nodes.

Def. 2 (Heterogeneous cluster). We define a heterogeneous cluster, or multi-
type cluster, as G′ = (V ′, E′), where: V ′ ⊆ V ; ∀v′ ∈ V ′, tv(v′) ∈ Tt (nodes in
the clusters are only of target types); E′ ⊆ (E ∪ Ê) is a set of edges (among the
nodes in V ′) belonging either to E or to a set of edges Ê containing extracted
edges, which relate nodes that are not directly connected in the original network.

Def. 3 (Hierarchical organization of clusters). A hierarchy of heteroge-
neous clusters is defined as a list of hierarchy levels {L1, L2, . . . , Lk}, each of
which consisting of a set of heterogeneous and possibly overlapping clusters.

In this specific application domain, target nodes are those representing lncRNAs
and diseases. Therefore, we distinguish two distinct sets of nodes Tl and Td,

Fig. 1. An example of a heterogeneous network, where different shapes represent dif-
ferent node types. Circles represent possible heterogeneous clusters.



representing the set of lncRNAs and the set of diseases, respectively. Our task
then consists in the identification of a hierarchy of clusters {L1, L2, . . . , Lk} and
of a function ψ(w) : Tl × Td → [0, 1] for each hierarchy level Lw, which, for each
lncRNA-disease pair, returns a score indicating its degree of certainty.

In the following, we describe our solution consisting of three steps: i) iden-
tification of the strength of relationships among nodes in Tl and Td, which will
define the set of extracted edges Ê; ii) construction of a hierarchy of (possibly
overlapping) heterogeneous clusters; iii) identification of the functions ψ(w) for
the prediction of previously unknown relationships.

2.1 Identification of the strength of the relationship among nodes

We first estimate the strength of the relationship of all the possible lncRNA-
disease pairs, following the idea we proposed in [15]: for each pair (li, dj), we
compute the score s(li, dj) by analyzing the indirect relationships in which the
lncRNA li and the disease dj are involved. In particular, as in [15], we adopt the
concept of meta-path, i.e., the set of sequences of nodes which follow the same
sequence of edge types. For each meta-path P between li and dj , we compute a
score pathscore(P, li, dj) representing the strength between li and dj following
the meta-path P . Since several meta-paths can be identified between two ob-
jects in the network, possibly with unlimited length (in presence of cycles), we
have to identify a strategy to assign a single score to each lncRNA-disease pair.
The strategy we considered is inspired by the classical formulation of fuzzy sets
[17]. In particular, since s(li, dj) should measure the degree of certainty of the
relationship between li and dj , we consider the scores computed over each meta-
path P (i.e., pathscore(P, li, dj)) as the degree of certainty estimated according
to P . Since the relationship between li and dj can be considered certain if there
exists at least one meta-path which proves its certainty (or, in other words, the
certainty of the relationship corresponds to the highest certainty showed over
the meta-paths), we compute s(li, dj) as follows:

s(li, dj) = max
P∈metapaths(li,dj)

pathscore(P, li, dj) (1)

where metapaths(li, dj) is the set of the c shortest paths connecting li and dj ,
and pathscore(P, li, dj) is the degree of certainty of the relationship between li
and dj according to the meta-path P .

In order to compute pathscore(P, li, dj), we represent each meta-path P as
a finite set of sequences of nodes. If a sequence in P connects li and dj , then
pathscore(P, li, dj) = 1. Otherwise, following the same strategy introduced be-
fore, it is computed as the maximum similarity between the sequences which
start with li and the sequences which end with dj (see Figure 2).

The similarity between two sequences seq′ and seq′′ is computed accord-
ing to the attributes of all the nodes involved in the two sequences. Follow-
ing [6], the similarity between two values of an attribute x, i.e., sx(seq′, seq′′),
is computed as follows: If x is a numerical attribute, then sx(seq′, seq′′) =



Fig. 2. An example of analysis of the sequences associated to the lncRNA l3 and to the
disease d3. In the example, sequences 2 and 6 (in yellow) are associated to the lncRNA
l3, and sequences 3, 4 and 5 (in green) are associated to the disease d3. The algorithm
pair-wisely compares the two sets of sequences (sequences in yellow and sequences
in green) and computes the degree of certainty between l3 and d3 as the maximum
similarity between two sequences.

1− |valx(seq
′)−valx(seq′′)|

maxx−minx
(minx and maxx are the minimum and maximum val-

ues, respectively, observed for the attribute x); when x is not numeric, then
sx(seq′, seq′′) = 1 if valx(seq′) = valx(seq′′), 0 otherwise.
It is noteworthy that some node types may not be involved in any meta-path. In
order to exploit the information conveyed by these nodes, we add an aggregation
of their attribute values to the nodes that are connected to them and that appear
in at least one meta-path. Such an aggregation considers values coming from
directly or indirectly (up to a predefined depth of analysis) connected nodes. For
this purpose different aggregation functions could be used. Following [15], we
use the arithmetic mean for numerical attributes, the mode for non-numerical
attributes and limit the depth of analysis for the aggregation to 2.

2.2 Construction of the hierarchy of heterogeneous clusters

Once all the possible pairs are identified, each associated with its degree of
certainty, we first build a set of (possibly overlapping) clusters in the form of
bicliques to be used in the subsequent step. A cluster is in the form of a biclique
if all the lncRNA-disease pairs in the cluster have a score above a given threshold
β ∈ [0, 1]. The algorithm consists of the following steps:

i) A filtering phase which keeps only the pairs with a score greater than (or
equal to) β. The result is the subset of pairs {(li, dj)|s(li, dj) ≥ β}.

ii) An initialization step which identifies the initial set of bicliques, each con-
sisting of a lncRNA-disease pair in {(li, dj)|s(li, dj) ≥ β}.

iii) A process that iteratively merges two clusters G′ and G′′ into a new cluster
G′′′. The initial set of clusters is regarded as a list and is sorted according to
an ordering relation <c that reflects the quality of the clusters. Each cluster
G′ is merged with the first cluster G′′ in the list leading to a merged cluster
G′′′ which still is a biclique. This step is repeated until no more merging can
be performed. The obtained result is the first hierarchy level L1.



The ordering relation <c is based on the cluster cohesiveness, defined as:

h(G) =
1

|pairs(G)|
·

∑
(li,dj)∈pairs(G)

s(li, dj) (2)

where pairs(G) is the set of all the possible lncRNA-disease pairs (both known
and unknown) in the cluster.

This measure actually corresponds to the average score of the relationships
in the cluster. Since, in our case, the score represents a degree of certainty, the
cluster cohesiveness can be considered as an indicator of the degree of certainty of
the global interactions among the group of lncRNAs and diseases in the cluster.
Therefore, we formally define the ordering relation <c as follows:

G′ <c G
′′ ⇐⇒ h(G′) > h(G′′) (3)

Once the first level L1 of the hierarchy has been identified, the other levels are
built by evaluating whether some pairs of clusters (bicliques, in L1) can be rea-
sonably merged. The approach is similar to that used to obtain the first level
of the hierarchy. The main difference is that, instead of working on bicliques,
we work on generic clusters, where the score associated to each pair is not nec-
essarily greater than β. Due to this difference, we use a different criterion for
the identification of candidates for merging which is inspired by the research in
hierarchical co-clustering. In this research, one of the commonly used stopping
criterion is based on a predefined threshold applied to the quality constraint
that must be satisfied in order to merge two clusters [12]. Analogously, in our
approach, two clusters G′ and G′′ are merged into a cluster G′′′ if h(G′′′) > α,
where α is a user defined threshold on the cluster cohesiveness. Note that low
values of α lead to a higher number of mergings and, accordingly, to less clusters
containing a higher number of objects.

We repeat the process until no merging is possible and return the obtained
hierarchy of heterogeneous clusters {L1, L2, . . . , Lk}, according to Def. 3.

2.3 Prediction of unknown relationships

After building the hierarchy of clusters, we identify possibly unknown relation-
ships for each hierarchical level. In particular, the prediction is performed by
assigning each possible lncRNA-disease pair with a degree of certainty computed

as the cohesiveness of the cluster in which it falls. More formally, given C
(w)
ij the

cluster in which the lncRNA li and the disease dj fall in the w-th hierarchical
level, we compute the final degree of certainty of the relationship as:

ψ(w)(li, dj) = h
(
C

(w)
ij

)
. (4)

When the lncRNA li and the disease dj appear in multiple clusters, i.e., C
(w)
ij

is a list of clusters, we combine their cohesiveness to obtain the final degree



Fig. 3. Two possible clusters identified at a given hierarchical level w. Circles repre-
sent lncRNAs, while squares represent diseases. The clusters suggest two new possible
relationships between l3 and d1 and between l1 and d3.

of certainty. Baseline combination strategies can be the maximum, the mini-
mum and the average. In this work, we propose to adopt a different combi-
nation function, which rewards those cases in which the pair appears in sev-
eral highly cohesive clusters (indicating a higher degree of certainty). In de-
tails, inspired by the evidence combination (EC) strategy proposed in [10], given

C
(w)
ij = [C1, C2, . . . , Cm], the list of the clusters in which the lncRNA li and the

disease dj fall in the w-th hierarhical level, we compute ψ(w)(li, dj) = ec(Cm),
where ec(Cm) is recursively defined as:

ec(Cm) =

{
h(C1) if Cm = C1

ec(Cm−1) + [1− ec(Cm−1)] · h(Cm) otherwise
(5)

In Figure 3, we show an example of the prediction step, where the two clusters
C1 and C2, identified at the w-th hierarchical level, suggest two potential new
relationships, i.e., between l3 and d1 and between l1 and d3. The former falls
only in the cluster C1, therefore it will be associated with a degree of certainty
computed according to the cohesiveness of C1. Formally:

ψ(w)(l3, d1) = h(C1) =
1

3 · 2
(0.8 + 0.5 + 0.5) = 0.3.

The latter falls in both C1 and C2 and its degree of certainty will be computed
according to the cohesiveness of both clusters. In particular, given h(C1) = 0.3
and h(C2) = 1

3·2 (0.7 + 0.8 + 0.9 + 0.8 + 1.0) = 0.7, by adopting the EC strategy
(see Equation 5), the degree of certainty of the relationship between l1 and d3
will be computed as:

ψ(w)(l1, d3) = h(C1) + [1− h(C1)] · h(C2) = 0.3 + (1− 0.3) · 0.7 = 0.79



3 Experiments

The proposed method has been implemented in the system LP-HCLUS (Link
Prediction through Heterogenous CLUStering). We performed our experimental
evaluation in order to evaluate the effectiveness of the proposed approach on a
complex biological dataset containing data about lncRNAs, miRNAs, genes and
diseases, as well as their known interactions and relationships. Such a dataset,
whose schema is depicted in Figure 4, has been built by integrating several
existing biological datasets:

– lncRNA-disease relationships and lncRNA-gene interactions from [5];
– miRNA-lncRNA interactions from [8];
– disease-gene relationships from DisGeNET [2];
– miRNA-gene and miRNA-disease relationships from miR2Disease [9].

The integrated dataset consists of 7050 diseases, 507 lncRNAs, 508 miRNAs,
94527 genes, 953 interactions between diseases and lncRNAs, 2877 interactions
between diseases and miRNAs, 26522 interactions between diseases and genes, 70
interactions between lncRNAs and miRNAs, 252 interactions between lncRNAs
and genes, and 803 interactions between miRNAs and genes.

Fig. 4. UML representation of the heterogeneous network used in the experiments.



We adopted the 10-fold cross validation on the set of known lncRNA-disease
relationships. Due to the absence of negative examples, following the approach
adopted in [13], we averaged the results obtained in terms of recall@K, i.e., the
recall measured by considering only the top-k returned relationships. In detail,
we produce a ranking of the predicted interactions by sorting them in descend-
ing order with respect to their degree of certainty and compute recall@K =

TPk

TPk+FNk
, where TPk (respectively, FNk) is the number of validated lncRNA-

disease relationships that were (respectively, were not) predicted in the first K
returned interactions. Since the most appropriate value of K cannot be known
in advance, we plot the obtained recall@K by varying the value of K.

LP-HCLUS has been run by considering 3 shortest paths for each lncRNA-
disease pair (i.e., c = 3). We collected the results obtained with the maximum
(MAX), the minimum (MIN), the average (AVG) and the evidence combination
(EC) strategies to combine the degree of certainty of relationships identified in
multiple clusters, focusing on the first 3 levels of the identified hierarchies which,
according to [12], lead to the best results.
As competitor systems, we considered the following approaches:

– A variant of the biclustering algorithm HOCCLUS2 [12], which is able to
solve the link prediction task. HOCCLUS2 has similar characteristics with
respect to the clustering approach proposed in this paper, i.e., it is able to
extract a hierarchy of (possibly overlapping) clusters. However, it does not
allow to take into account several types of objects, linked by several types of
edges. Moreover, the algorithm adopted for the construction of the hierarchy
of clusters is different and guided only by the cohesiveness.

– The link prediction algorithm ncPred [1], which is tailored for the prediction
of ncRNA-disease associations.

– A baseline approach, which consists in the estimation of the degree of cer-
tainty by means of the strategy described in Section 2.1, i.e., without the
clustering and the prediction steps. The comparison of the results with re-
spect to this baseline approach allows us to evaluate the real contribution of
the exploitation of clusters for link prediction. We call this baseline approach
LP-HCLUS w/o LP (i.e., LP-HCLUS without Link Prediction).

We fed all the competitor methods with the set of lncRNA-disease scores com-
puted by LP-HCLUS, since, in their original original form, they are not able to
analyze a complex heterogeneous network.

Since both HOCCLUS2 and LP-HCLUS require the input parameters α and
β, we performed some preliminary experiments to evaluate their effect on the
results. In particular, we evaluated the results with the following configurations:
α = 0.1 and β = 0.3; α = 0.1 and β = 0.4; α = 0.2 and β = 0.3; α = 0.2 and
β = 0.4. By observing the results reported in Figure 5, obtained with the EC
strategy on the first three hierarchical levels, we can conclude that the results do
not appear to be significantly affected by these parameters. A similar behavior
was observed for the other combination strategies and for HOCCLUS2. However,
since the obtained recall@K results appeared higher in the case of α = 0.2 and
β = 0.4, the other experiments were conducted with such values.



Fig. 5. Recall@K obtained by LP-HCLUS EC with different values of α and β.



Value of K
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

LP-HCLUS w/o LP 0.242 0.503 0.750 0.908 0.908 0.908 0.908 0.908 0.910 0.913
ncPred 0.154 0.228 0.248 0.275 0.293 0.304 0.316 0.325 0.336 0.344

l1 HOCCLUS2 0.329 0.658 0.908 0.908 0.908 0.908 0.908 0.910 0.913 0.919
l1 LP-HCLUS AVG 0.349 0.665 0.913 0.913 0.913 0.913 0.913 0.915 0.919 0.922
l1 LP-HCLUS MAX 0.340 0.644 0.915 0.926 0.926 0.926 0.933 0.942 0.948 0.951
l1 LP-HCLUS MIN 0.331 0.683 0.913 0.913 0.913 0.913 0.913 0.915 0.919 0.922
l1 LP-HCLUS EC 0.311 0.629 0.913 0.9330.9390.9570.9570.9570.9570.957

l2 HOCCLUS2 0.324 0.676 0.908 0.908 0.908 0.908 0.908 0.908 0.910 0.911
l2 LP-HCLUS AVG 0.362 0.658 0.908 0.908 0.908 0.908 0.908 0.910 0.910 0.915
l2 LP-HCLUS MAX 0.336 0.691 0.908 0.910 0.910 0.910 0.911 0.917 0.920 0.922
l2 LP-HCLUS MIN 0.329 0.656 0.908 0.908 0.908 0.908 0.908 0.911 0.913 0.917
l2 LP-HCLUS EC 0.349 0.662 0.910 0.931 0.933 0.949 0.949 0.951 0.951 0.951

l3 HOCCLUS2 0.304 0.669 0.908 0.908 0.908 0.908 0.908 0.910 0.910 0.911
l3 LP-HCLUS AVG 0.353 0.680 0.908 0.908 0.908 0.908 0.908 0.908 0.911 0.917
l3 LP-HCLUS MAX 0.329 0.680 0.908 0.908 0.908 0.908 0.908 0.910 0.915 0.917
l3 LP-HCLUS MIN 0.318 0.667 0.908 0.908 0.908 0.908 0.908 0.910 0.915 0.919
l3 LP-HCLUS EC 0.358 0.689 0.910 0.930 0.933 0.939 0.940 0.949 0.951 0.951

Table 1. Recall@K obtained by LP-HCLUS and by the competitors for different values
of K. Results obtained by HOCCLUS2 and LP-HCLUS have been collected for the first
3 levels of the hierarchies. For each value of K, the best result is highlighted in bold.

In Table 1, we report the results in terms of recall@K obtained by the consid-
ered approaches, with K ∈ {500, 1000, . . . , 5000}. The first conclusion that can
be drawn regards the superiority of LP-HCLUS with respect to the considered
competitor approaches, with all the values of K. This conclusion is even more
evident for small values of K, i.e., in the first part of the ranked interactions.
Moreover, by comparing the results obtained by LP-HCLUS with the baseline
approach (LP-HCLUS w/o LP) we can observe a significant improvement when
the clustering and the link prediction phases are adopted. This means that the
strategy proposed in this paper, i.e., the identification of heterogeneous clusters
and their exploitation for link prediction purposes, appears to be effective. More-
over, although the adopted variant of HOCCLUS2 is based on the same principle,
it still leads to a lower recall@K results, emphasizing that the clustering algo-
rithm and the adopted combination strategies proposed in this paper perform
better. A further observation comes from the comparison of the results obtained
by LP-HCLUS with different combination strategies. Indeed, by observing Table
1, we can conclude that the strategy based on evidence combination (EC) gen-
erally leads to the best results, especially for high values of K. This is mainly
due to the fact that it rewards the interactions falling in multiple highly-cohesive
clusters. This means that, on overall, predicted interactions have a higher de-
gree of certainty (also higher than the those predicted with the strategy based
on MAX), leading to a higher recall with high values of K.



Fig. 6. Recall@K results obtained by LP-HCLUS (α = 0.2, β = 0.4) and by the
considered competitor methods.



A more global overview is provided in Figure 6, where we plot the recall@K
results of all the considered approaches, at different levels of the hierarchy. This
figure shows the overall superiority of LP-HCLUS, when the strategy based on
evidence combination is adopted. Moreover, it also shows that the competitors
(i.e., ncPred and HOCCLUS2) and the baseline method cannot reach the recall
values obtained by LP-HCLUS (very close to 1.0) even with K = 70, 000.

A final consideration comes from the analysis of the results at different lev-
els of the hierarchy. At this respect, we could not find a general trend in the
results, in terms of Recall@K. However, such a measure is only able to evaluate
the results quantitatively, and a deeper analysis could be necessary in order to
emphasize possible differences from a qualitative viewpoint. Therefore, since we
still believe that the hierarchy can be fruitfully exploited to emphasize interac-
tions at different levels of granularity, in future works we will involve a domain
expert in the analysis of results in order to evaluate qualitatively whether this
idea appears confirmed by real biological findings.

4 Conclusions

In this work, we proposed the method LP-HCLUS, which is able to analyze
heterogeneous biological networks in order to identify (possibly overlapping) hi-
erarchically organized clusters and to exploit them to predict possibly unknown
lncRNA-disease relationships. Such findings can be exploited for better under-
standing the role of lncRNAs in the development of human diseases. We also
proposed the adoption of a specific strategy, based on evidence combination, to
aggregate the different degrees of certainty when a new lncRNA-disease relation-
ships is suggested by multiple clusters. Experiments performed on an integrated
biological dataset showed that the proposed method, especially when adopting
the strategy based on evidence combination, is able to outperform the methods
HOCCLUS2 and ncPred, as well as a baseline approach. As future work, we
intend to perform additional experiments on large-scale networks, possibly ex-
ploiting a distributed variant of the method proposed in this paper. Moreover,
we will perform a qualitative evaluation, from a biological point of view, of the
real contribution provided by our computational approach in the identification
of lncRNA-disease relationships.
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